welcome: please sign in

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
What is the opposite of 'day'?

Revision 5 as of 2012-08-19 02:13:37

location: ArduinoFFT

Arduino FFT Library

About the Arduino FFT Library

The Arduino FFT library is a fast implementation of the standard FFT algorithm. It can give you up to 256 frequency bins at 16b depth, and a minimum of ~7ms update rate. It is adjustable from 16 to 256 bins, and has several output methods to suit your needs. It can be set to 16b linear, 8b linear, 8b logarithmic, or 8b octave output. All of these different modes are detailed in the read_me file included in the library.


Libraries: Arduino1.0 or Arduino-0022 (should work with both)

Installing Libraries

The above files need to be placed in the libraries folder inside of your Arduino sketch directory. After you unzip !ArduinoFFT.zip, take the FFT folder and place it in your libraries folder, restart Arduino and load one of the example programs to test out the library.

If you are not certain where the libraries folder is located on your computer, try the following:


Open up the Arduino software, and go to Sketch -> Add File..., and a window will pop up that is your sketch folder. This is usually C:\Documents and Settings\<your user name>\My Documents\Arduino. If you see a libraries folder, put the AudioCodec library in there. If you don't already have one, create the libraries folder in that directory.

Implementation Details

For those of you who want to look under the hood, let me give you a guided tour. The speed improvements in this particular implementation are due to 2 things. First, in any FFT, you must multiply the input variables by fixed cosine and sine constants. This is what consumes the most time on the ATmega, as 16b x 16b multiplies take around 18 clock cycles. On the other hand, 16b + 16b adds only take 2 clock cycles. So, its better to add than it is to multiply. As it turns out, a lot of those sine and cosine constants used in the FFT are just 0 or 1, so you don't have to multiply, and can just add. For example, in a 256 point FFT, there are 1024 complex multiplies to be done, of which 382 do not need to be done as they are either 0 or 1. Thats almost half of them!

The ArduinoFFT checks for those 0 or 1 conditions, and simply does adds instead. as it turns out, those easy constants occur at regular intervals, and can be easily checked for. The benefits of this sort of approach are limited for larger FFTs. The total savings is (1.5*N - 2) for an N sized FFT, whereas the total number of multiplies is ((N/2)*log2(N)). This gives a savings ratio of (3/log2(N)}, which drops as N increases.

The second set of time savings in this implementation comes from using lookup tables to calculate the square roots of the magnitudes. The difficulty in this method is that the input mapping to the lookup table is much, much larger than the actual contents of the lookup table itself. So, to not waste memory space, a compression of the input values must be done. For example, taking the square root of a 16b value has 64k input values which must map down to 256 output values. To have an answer hard coded into memory space for all of those inputs is impossible on the Arduino (and a waste in general). So instead, i used a linear interpolation of the input space, with different slopes for different sections. For the 8b linear output, this can be done with no loss of precision with either 3 or 4 linear sections. This means that the input value can be checked for which section it lies in, and the square root fetched, in around 12 clock cycles,


If you are interested in learning more about the FFT, here are some good resources that i used in writing my code.